
Eurographics / IEEE Symposium on Visualization 2011 (EuroVis 2011)
H. Hauser, H. Pfister, and J. J. van Wijk
(Guest Editors)

Volume 30 (2011), Number 3

A Shader Framework for Rapid Prototyping of
GPU-Based Volume Rendering

Christian Rieder1, Stephan Palmer2, Florian Link2 and Horst K. Hahn1

1Fraunhofer MEVIS, Germany
2MeVis MEDICAL SOLUTIONS AG, Germany

Abstract
In this paper, we present a rapid prototyping framework for GPU-based volume rendering. Therefore, we propose
a dynamic shader pipeline based on the SuperShader concept and illustrate the design decisions. Also, important
requirements for the development of our system are presented. In our approach, we break down the rendering
shader into areas containing code for different computations, which are defined as freely combinable, modularized
shader blocks. Hence, high-level changes of the rendering configuration result in the implicit modification of the
underlying shader pipeline. Furthermore, the prototyping system allows inserting custom shader code between
shader blocks of the pipeline at run-time. A suitable user interface is available within the prototyping environment
to allow intuitive modification of the shader pipeline. Thus, appropriate solutions for visualization problems can
be interactively developed. We demonstrate the usage and the usefulness of our framework with implementations
of dynamic rendering effects for medical applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Interaction Techniques I.3.3 [Computer Graphics]: Picture/Image Generation—Display Algorithms I.3.6 [Com-
puter Graphics]: Methodology and Techniques—Dynamic Shader Generation

1. Introduction

Direct volume rendering (DVR) is used to create meaning-
ful images from 3D data sets. GPU-based approaches that
allow for interactive rendering on consumer graphics hard-
ware have been proposed. Interactive GPU-based DVR is
used in many fields, particularly in medical visualization.
However, the creation of meaningful visualizations for med-
ical diagnosis is challenging, due to the particular needs
of the medical users [MLZ∗02]. In the literature, effective
visualization algorithms have been proposed, which often
focusing on specific scanning strategies and medical ques-
tions [BHWB07]. A key problem within common rendering
frameworks is the high amount of effort required to develop
appropriate visualizations and to customize the algorithms
rapidly.

In this work, we present a rapid prototyping framework
for GPU-based volume rendering, which supports com-
puter scientists in the development of volume visualiza-
tions. Our framework extends the volume renderer of MeVis-
Lab [MeV11], a freely available development environment
for medical image processing and visualization, to allow the

developer to interactively append custom shader code. The
main contributions of our paper are:

• The determination of important requirements for the de-
velopment of a rapid prototyping framework for volume
rendering upon which our design decisions are based.

• The introduction of a dynamic rendering configuration to
facilitate a customized extension of the rendering shader.
Technically, we present a flexible and modularized shader
pipeline based on the SuperShader concept.

• The realization of a rapid prototyping environment, in
which custom shader code can be interactively edited and
attached to the shader pipeline during run-time.

• The demonstration of the usage and usefulness of our sys-
tem, which has been used to rapidly develop medical vi-
sualizations and integrate them in clinical applications.

2. Related Work

Dynamic shader creation has been a research topic even be-
fore modern programmable GPUs became available. It is an
important topic in many fields of image generation, not just

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/j.1467-8659.2011.01952.x

http://www.eg.org
http://diglib.eg.org

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

volume rendering. One of the first approaches for the com-
bination of multiple techniques for illumination and textur-
ing are Shade Trees [Coo84], which combine basic shad-
ing operations using a data flow concept. Building Block
Shaders by Abram and Whitted [AW90] combine that ap-
proach with a graphical user interface to enable efficient
generation of shader programs and represent the first Vi-
sual Shading Language. In recent years, similar implemen-
tations have been proposed for GPU-based realtime render-
ing [GBD04,MSPK06,ME09]. All of these visual program-
ming based approaches are aimed at simplifying the shader
definition for the user, e.g., for an artist [Tat04,GD06]. How-
ever, this does not reflect the needs of application-controlled
shader adaption for GPU-based realtime rendering in com-
plex visualization systems or games. Such scenarios require
the generation of specific effects at runtime without needing
to store all possible permutations [FW04].

A concept designed for these special needs is the Super-
Shader [McG05]. The basic idea of this approach is to break
down the whole shader into smaller parts [Har04], such as its
subdivision based on components of the underlying render-
ing pipeline. The SuperShader contains all of the potentially
required parts in the form of code snippets and allows the
deactivation of undesired parts. Communication between the
parts is achieved by means of a global data structure. Trapp
et al. [TD07] extend that approach by adding a Shader Man-
agement System that concatenates the shader at runtime in-
stead of disabling unused parts.

Stegmaier et al. [SSKE05] present a simple and flexi-
ble volume rendering framework for GPU-based raycasting.
New algorithms are implemented by writing completely new
shaders. Bruckner et al. [BG05] present VolumeShop, a pro-
totyping platform for visualization research, and direct vol-
ume illustration in particular. Its main aim is to provide max-
imum flexibility to the developer to create illustrative visu-
alizations such as exploded views or three-dimensional se-
lection painting. Also, several volume rendering frameworks
specifically address rendering of multiple intersecting vol-
umes. Brecheisen et al. [BiBPtHR08] describe a raycasting-
based multi-volume rendering system, which uses a depth-
peeling approach to combine geometry and multiple vol-
umes in one rendering. Plate et al. [PHF07], present a multi-
volume shader framework that focuses on rendering very
large, multi-resolution intersecting volumes. A shader com-
poser which is based on the data flow model allows com-
posing predefined shader nodes to a final rendering shader
at run-time. Voreen [MSRMH09], based on raycasting, pro-
vides a graphical user interface for defining a network of so-
called processors which together assemble a render pipeline.
Predefined functions of a shader library can be edited or sub-
stituted by the user, which are included into the final shader.
Although Voreen gives control over the rendering pipeline, it
does not allow dynamically changing parts of the rendering
shader without modifying the remaining shader code. This
is possible within the render graph concept introduced by

Rössler et al. [RBE08a,RBE08b]. Using this approach, mod-
ularized shading algorithms can be defined and interactively
combined to render multiple volumes. To extend this system
with new render nodes, one inherits from existing C++ base
classes. Thus, the abstract render nodes can not be edited on
the fly, nor can they automatically created by the application.
In contrast to these concepts, we propose a framework which
focuses on the developer- or application-controlled dynamic
editing of modularized shader code.

Bitter et al. [BVUW∗07] compare four freely available
frameworks for image processing and visualization that
use ITK. A survey of the most successful open-source li-
braries and prototyping frameworks for medical applica-
tion development is presented in [CJN07]. Another pro-
totyping environment is the eXtensible Imaging Platform
(XIP) [PET07, XIP11], which has basically a comparable
functionality as MeVisLab. To our knowledge, none of the
related prototyping and volume rendering frameworks allow
dynamically extending the rendering shader with modular-
ized custom shaders snippets which can be freely edited by
the developer during run-time.

3. Rapid Prototyping

Our motivation to use rapid prototyping for volume render-
ing is the possibility of developing appropriate solutions for
a current visualization problem in an interactive way, with-
out recompilation of the C++ program and to quickly in-
tegrate the solution into stand-alone applications. For in-
stance, in medical visualization, specific visualizations have
to be created for image-guided surgery planning, diagnosis
support for various diseases, or anatomical exploration of
the patient data. Often, changing high-level rendering pa-
rameters of existing features does not solve such complex
visualization problems. Hence, the volume renderer has to
be extended with new features, which is often not possible
in the underlying C++ code level at run-time. Because this
strategy runs counter to the concept of rapid prototyping,
the renderer has to be configured in a level between low-
level C++ code programming and high-level parameter ad-
justment. Thus, the following are important requirements for
DVR-based rapid prototyping:

Rendering Extension. The developer has to be able to ma-
nipulate the rendering configuration, particularly the shader
code. To create new rendering effects, modularized custom
shader code should be created and positioned into the exist-
ing rendering configuration while ensuring a valid shader.

Dynamic Rendering Configuration. To allow the evalua-
tion of the rendering extension at run-time of the prototyping
application, a dynamic rendering configuration is needed.
Hence, the shader code of the volume renderer has to be
structured in such a way that high-level changes of the ren-
dering configuration result in the implicit modification of the
underlying shader code.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1032

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

Function Library. In an efficient prototyping environment,
often-used shader functionality should be defined in shader
functions and stored in a function library. With access to
these functions, the user is able to rapidly implement cus-
tom shader code.

Suitable user interface. To facilitate the implementation
of the modifications mentioned above, a suitable user inter-
face has to be available within the prototyping environment.
Such a user interface allows creating custom shader code,
which uses the function library and specifying the extension
of the renderer with the custom shader. Additionally, shader
parameters, such as uniform variables and texture samplers,
can be attached to the renderer.

4. Dynamic Shader Pipeline

The dynamic shader pipeline is the core functionality, which
allows interactive rendering extension and dynamic configu-
ration of the volume rendering. We use the OpenGL Shading
Language (GLSL).

4.1. Design Decisions

The design decisions upon which our system is based relate
to three key ideas:

• Breaking down the shader code into areas containing code
for different computations.

• Definition of shader code as freely combinable, modular-
ized shader blocks.

• Insertion of custom shader code between blocks without
invalidating the final shader.

We identify the Shade Trees as well as a SuperShader-based
concept as possible approaches for our modularized frame-
work. In the Shade Tree concept, modularized shading com-
ponents are arranged as a tree. The shading result of every
basic shading block is propagated up the tree until the final
result in the root is reached. The root denotes the output, and
the leaves denote the input of the shader. Generally, Shade
Trees allow high flexibility and are well suited for visual rep-
resentation, but the implementation is laborious.

The SuperShader concept assumes the existence of a finite
number of fragments, ordered in a linear list. Every fragment
contains a code snippet that calculates an effect. The effect
shaders are generated and optimized by a control shader at
run-time using static branching.

Originally, we decided to use the Shade Trees to imple-
ment a shader pipeline in a prototypical framework. Atomic
shader blocks can be edited and connected using a vi-
sual representation of the graph. The replacement of shader
blocks is possible considering the signature of input and
output values, whereas the internal shader code can be ne-
glected. After discussions and user evaluations, we decided
to switch to the SuperShader concept, because replacing

shader code under consideration of the child and parent
node’s signatures is difficult to handle in practice. To replace
atomic shader blocks with custom functionality, the signa-
ture has to be well known. In contrast, the signatures of all
shader fragments in the SuperShader approach are identical.
Thus, the shader can be combined more freely, and custom
shader code may inserted flexibly. Furthermore, we found
the linearly ordered list of the shader blocks a more intuitive
representation of the volume rendering pipeline.

4.2. Basic approach

In our SuperShader-based approach, we directly copy the
snippets into the shader code instead of using a control
shader, allowing the addition of custom shader code dynam-
ically. We utilize two general ideas of the SuperShader con-
cept:

1. The assumption that a shader can be subdivided into a
linear order of rendering operations such as lighting or
transformation.

2. The code snippets use a global data structure for com-
munication which is passed to the snippets at execution.
Input values are read from the data structure and output
values are written into the data structure.

4.2.1. Shader Pipeline

We subdivide the rendering shader into a linearly ordered
shader pipeline and model a pipeline step as a subset of
several shader pipeline functions, which contain the GLSL
shader code. Figure 1 shows a schematic overview of our
rendering pipeline.

LightingStep n-1 Step n+1Pipeline Step

Pipeline Function

Shader Function Code

Light 1 Light nLight 0

uniform type light1Params;

void step_Light1(inout struct)
{ function body };

Figure 1: Three layers of the rendering pipeline. Pipeline
steps are in the top layer, which are subdivided into a subset
of pipeline functions. The GLSL code itself is located below,
in the shader function code layer.

The following parameters have to be explicitly defined
for each pipeline function for introspection: shader param-
eters, struct parameters, and library functions. Thus, sev-
eral shader parameters, such as varying or uniform variables,
can be attached to each pipeline function. Furthermore, the
global data structure is a globally defined struct in the fi-
nal shader. The struct is passed as input and output parame-
ter to the pipeline functions. Input values are read from the

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1033

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

struct and output values are written into the struct. The struct
can be interpreted as the global state of the pipeline which
represents the intermediate and final results of the rendering
computation. Thus, all pipeline functions have the same sig-
nature and no return value and can only communicate via the
global struct. Figure 2 shows the shader code of a pipeline
function, which writes shading multipliers into the global
struct.

uniform vec4 lightColor0;
uniform vec3 lightVector0;
uniform vec3 halfVector0;
uniform float specularity;

void vrStep_directionalLight0(inout globalStruct state) {
vec2 result = vrLib_getShadingFromLight(state.gradient,

lightColor0,
lightVector0,
halfVector0,
specularity);

state.diffuse0 = result.x;
state.specular0 = result.y;

}

Figure 2: Pipeline function to obtain shading from a light
source using a library function. The function reads the gra-
dients from the global struct and writes both, diffuse and
specular multipliers back into the struct.

To allow the reuse of common shader components such
as shading or texture fetching, we also propose the use of
a function library. A library function is specified as a code
snippet which calculates a specific shader effect or color
value per sample. Because library functions are stored in
an external library and are generally independent from the
pipeline, global shader attributes can not be attached. Thus,
library functions have no access to the global struct of the
pipeline and have to write the calculated effect as a return
value. Figure 3 shows the shader code of a library function
which calculates the diffuse and specular multipliers for a
light source.

vec2 vrLib_getShadingFromLight(in vec3 inGradient,
in vec4 inLightColor,
in vec3 inLightVector,
in vec3 inHalfVector,
in float inSpecularity) {

float diff = max(dot(inGradient, inLightVector), 0.0);
float spec = max(dot(inGradient, inHalfVector), 0.0);
spec = inLightColor.a * pow(spec, inSpecularity);
return vec2(diff, spec);

}

Figure 3: The library function returns diffuse and specular
multipliers as a vec2 required for volume shading.

4.2.2. Shader Generation

To generate the final shader, a shader factory algorithm com-
bines the resulting shader from the active pipeline steps. The
shader pipeline consists of the pipeline map, a data structure

to reference pipeline functions. The corresponding shader
string is generated using the pipeline map.

Setup of Data Structure. The key of the pipeline map is
pipeline position, and the value is pipeline step. A pipeline
step contains an ordered list of pipeline function references.
For all pipeline steps of the data structure, the active pipeline
functions are added.

Generation of Shader String. Subsequently, the pipeline
map is used to generate the corresponding shader string. In-
put is the ordered list of functions, given implicitly in the
map. Output is the final shader string. The following steps
are processed:

1. The used information (shader pipeline context) for each
pipeline function is stored in an additional temporary data
structure:

• Used varyings/uniforms.
• Used parameter struct entries.
• Used library functions.

2. The declarations (stored in the temporary data structure)
are appended to the shader string:

• Varying/uniform declarations.
• Parameter struct declaration.
• Library function declarations of used functions only.
• All pipeline function declarations.

3. The main function is appended to the shader string:

• Struct instantiation of the default values for the struct.
• Call to pipeline functions in correct order (as defined

in the map).

Figure 4 (a) gives an illustrative overview of the resulting
SuperShader pipeline.

4.3. Application to Volume Rendering

In our slicing-based volume rendering system [LKP06], we
define 16 pipeline groups for the available rendering effects
(see Figure 4 (b)). The pipeline steps are grouped into four
main rendering steps according to the general volume ren-
dering pipeline. The first group consists of the Sampling
pipeline steps, which fetch the sampling value for each ac-
tive data set. The Classification group contains the steps for
the application of corresponding transfer functions to the
samples. Shading operations such as lighting, boundary en-
hancement, or tone shading are located in the Shading group.
The Compositing group is the last group in the pipeline, con-
taining the final composition of the samples to calculate the
output fragment color.

Due to input–output parameter dependencies of the
pipeline functions (e.g., gradients are needed for illumina-
tion calculation), the positions of the pipeline steps are ar-
ranged in a fixed order. However, the shader code of the

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1034

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

main function body

header

step_N(state);

globalStruct state = globalStruct
(parameter initialization);

void step_N(inout globalStruct state)
{ function body };

type lib_N(in attributes)
{ function body };

struct globalStruct
{ parameter definition };

varying type name;
uniform type name;

shader parameters:

struct definition:

library functions:

pipeline functions:

struct initialization:

pipeline step calls:

void main () {

}

main function body

(a)

Sampling:
Primary volume
Mask volume
Tag volume
Additional volumes
Gradient volume

Classification:
Primary volume
Additional volumes

Shading:
Directional lights
Boundary enhancement
Tone shading

Compositing:
Primary volume color
Shading
Alpha
Additional volume color

Start

End

(b)

Figure 4: (a) Overview of the composed SuperShader code
of the pipeline with library and pipeline function. (b) The 16
pipeline steps are grouped in four main rendering steps.

pipeline steps may be changed depending on rendering pa-
rameters, e.g., on the number of active light sources. Gen-
erally, the pipeline steps are activated according to the en-
abled rendering effects of the volume renderer. For instance,
if volume shading is enabled, the rendering system has to
activate the gradient calculation pipeline step, which is posi-
tioned before the illumination step. Because the implemen-
tation of shader functions are generally independent from
each other, the underlying gradient calculation algorithm
may be changed (texture based or on-the-fly [HKRs∗06])
during run-time without affecting other pipeline steps.

4.4. Application to Slab Rendering

In addition to 3D renderings, we utilize our volume renderer
to enable rendering orthographic projections, which allows
efficient visualization of arbitrary multi-planar reformations.
Furthermore, the data sets have to be loaded only once into
memory and can be shared by multiple renderers. Hence, the
shader pipeline can also be utilized for advanced 2D slice
visualizations.

5. Prototyping Environment

The developed visual prototyping environment supports a
Graphical User Interface (GUI) and scripting functionality
to allow customization of the GLSL shader pipeline of the
volume renderer. An API to develop C++ code is also sup-
ported.

5.1. Volume Rendering Scene Graph

Our volume rendering system is based on a scene graph. The
volume renderer itself is a scene graph node. Supplemen-
tary nodes are various volume data nodes (e.g., additional
volume and mask volume), transfer function nodes, and ren-
dering effect nodes such as shading or boundary enhance-
ment [ER00]. The scene graph concept allows the same vol-
ume renderer to be used in different scenes. Thus, the data
set has to be loaded once into memory and can simultane-
ously be visualized in multiple viewers with varying render
configurations.

If the state of a node changes, the scene graph will be tra-
versed at the next frame and all node elements will be col-
lected. Subsequently, the shader factory of the renderer gen-
erates the shader string and compares it with the last com-
piled shader program. If the shader programs differ from
each other, the new shader is compiled and used for ren-
dering. Due to the compilation process of the alternated
shaders, a performance overhead can be observed. Thus, the
compiled shaders are cached, allowing rapid reuse of previ-
ously executed shader configurations. Figure 5 illustrates the
shader generation process.

Because of the visual representation of the nodes in our
prototyping environment, the developer is able to connect
the nodes to the scene graph interactively. Thus, the volume
rendering can easily be extended at run-time.

Outside
render loop

Add built-in
elements

Apply custom
modifications

Generate
shader string

Check
cache

Compile and
cache shader

Use compiled
shaderRender image

Not cachedCached

Figure 5: Illustration of the shader generation process
which has to be repeated for every frame.

5.2. Custom Shader Pipeline

The presented fixed pipeline steps with the pipeline func-
tions implement the available rendering effects in the Super-
Shader. To allow extension of the rendering pipeline with
additional rendering effects, we introduce custom pipeline
functions. A custom pipeline function is a shader function
for which the function body as well as the parameters can
be edited by the user. Custom pipeline functions can be at-
tached to a pipeline step in order to add or replace existing
pipeline step elements (see Figure 6). Therefore, we present
the shader function node, the core functionality to edit the
custom shader function and to control the appending to the
pipeline. Two additional nodes allow adding shader parame-
ters and attaching shader code to the header, such as library
functions to the shader pipeline. Inspector nodes can be used
to visualize the current pipeline as well as the composed
shader used for rendering.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1035

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

LightingStep n-1 Step n+1

Light nbefore after

Pipeline Step

Pipeline Function

replace

Figure 6: Custom pipeline functions (orange) can be at-
tached before or after, or replace the pipeline functions of
a selected pipeline step.

5.2.1. Shader Function Node

The shader function node is used to implement a custom
pipeline function. We designed the GUI to be as simple as
possible to allow fast and intuitive modifications without
limiting the ability to create advanced shader effects.

Function Declaration. A text field with GLSL syntax high-
lighting allows the function body to be implemented and the
function name to be defined (see Figure 7). Access to the
global struct is achieved via the instance name state.

Parameter Declaration. The parameters of the global
struct have to be defined for communication with the
pipeline. We introduce the new keyword state to identify
variables of the global struct. State parameters have to be
defined with default value, to always ensure a valid defini-
tion of the struct constructor in the shader’s main function.
Moreover, used varying and uniform parameters have to be
declared in the parameter section.

Pipeline Modification. One of the available (vertex or frag-
ment) pipeline steps has to be specified for the placement of
a custom shader function. If multiple pipeline functions sub-
divide a pipeline step (compare with Figure 1), the place-
ment can be applied to a single pipeline function (substep)
or to all pipeline functions (default). Four placement modes
are available: Add Before, Add After, Replace, and Remove.
In the Add Before mode, the custom pipeline function will be
inserted into the selected step before the specified pipeline
function and all functions, respectively. Analogously, the
Add After mode will insert the custom function after the
pipeline function. In the Replace mode, the custom function
will replace the selected pipeline function and all functions,
respectively. Finally, the Remove mode can be used to com-
pletely remove all functions in the pipeline step. Addition-
ally, an optional rule can be applied to all placement modes:
If the selected pipeline step is not active, the custom shader
function will not be inserted into the pipeline.

String Replacement. One of our requirements is to facili-
tate a dynamic and flexible definition of the custom shader
function. For that, a string replacement mechanism is inte-
grated into the shader function node. The string replacement

Figure 7: The GUI of the custom shader function node. In
this example, the function calculates a clip plane and modi-
fies the color of the specified volume. Note that the character
$ is a wildcard for the current volume name.

allows replacing any string in the parameter declaration, sub-
step, function name, and function body text fields before ap-
pending the shader function. In Figure 7, the character $ is
used as wildcard for the volume texture name. This allows
for multiple instances each with a unique identifier.

5.2.2. Shader Parameter Node

If uniform parameters are used in the custom shader, the pa-
rameter values have to be bound to the OpenGL context and
transferred to the graphics card. For that, shader parameter
nodes with a simple GUI can be connected to the scene graph
(see Figure 8). The following data types are supported: bool,
4x4 matrix, and vector[1..4] of type float and integer, respec-
tively. Additionally, for uploading images, 1D, 2D, and 3D
texture samplers as well as frame buffer sampler and cube
map nodes can be used.

Figure 8: The GUIs of three shader parameter nodes.

5.2.3. Shader Include Node

To allow extension of the function library with custom func-
tions or global parameters, we introduce the shader include
node. With the shader include node, custom shader code can
be added to the shader header of the rendering pipeline for
use in custom shader functions (see Figure 9). In contrast to

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1036

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

the global function library, the shader include is only valid
in the connected scene graph.

Figure 9: The GUI of the shader include node. The function
GetEllipsoid() is added into the fragment shader header.

6. Example Applications

In this section, we present two examples for the usage of our
prototyping environment. In the first example, we demon-
strate how the shader pipeline can be used to implement
flexible fragment clipping operations for multi-volume ren-
dering. The second example illustrates the implementation
of rendering effects for planning radiofrequency ablation.

6.1. Fragment Clipping for Multi-Volume Rendering

Fragment clipping was introduced by Weiskopf et
al. [WEE02]. Visualizing multi-modal volume data
typically requires the interactive definition of multiple clip
planes per volume data set. Which volume is to be clipped
away, and which is to be excluded from clipping must be
defined for each clip plane. Designing a shader to handle
this is challenging, because the exclude rule depends on the
data sets currently enabled. Also, the shader should be valid
if the rendering configuration changes, e.g. if a rendering
effect such as shading is enabled. The following medical
visualization case demonstrates our solution to integrate
clip planes in multi-modal volume rendering.

A cerebral arteriovenous malformation (AVM) is an ab-
normal connection between veins and arteries in the brain.
The complex angio-architecture of the AVM as well as the
three-dimensional shape of the feeding and draining vessels
has to be understood before surgery. To support the neuro-
surgeon in this challenging task, we developed a viewer ap-
plication [WRD∗11], which allows the neurosurgeon to in-
tuitively adjust clip planes to explore the AVM, for which
several data sets are considered.

Utilizing our framework, a container node has been devel-
oped to allow reuse of the clip plane in the scene graph. The
container includes a single custom shader function node with

the GLSL implementation of the clip plane (see Figure 7)
and required parameters (e.g., plane vector and a name string
of the volume to be clipped). The shader code is simple: the
length from sample to plane is calculated, and the volume’s
color is multiplied with zero if the length is negative, other-
wise it is multiplied with one. The pipeline will be modified
with following setting: Fragment Step is set to Classification
Additional, Substep is set to the current volume name via
the wildcard $ and the Modification Type is set to Add Af-
ter. Thus, the clip plane function is always inserted after the
classification of the specified volume. If the volume’s classi-
fication is inactive, i.e., the volume is disabled, the clip plane
function is not appended. Furthermore, a clip plane function
is independent of all other pipeline function. Hence, the ren-
dering configuration can be adjusted (e.g., varying shading
modes or disabling of volumes) without invalidating the fi-
nal rendering shader (see Figure 10).

6.2. Dynamic Visualization of Ablation Zones

For planning image-guided radiofrequency ablation (RFA),
the cell destruction caused by ablation has to be estimated.
An important requirement is that different applicator mod-
els with corresponding ablation zones, specified as ellipsoids
by the manufacturers, can be visualized in the slice views
and the corresponding volume rendering simultaneously. For
planning of RFA, multiple applicator models with varying
settings may be placed, moved, and toggled on or off in real
time to discover the optimal ablation scenario.

container ellipsoid n

2D axial
Viewer

main volume
VolumeRenderer

calc ellipsoid n
ShaderFunction

ellipsoid function
ShaderInclude

volume
data set

3D
Viewer

compose ellipsoid
ShaderFunction

shared nodes
Group

compose ellipsoid
ShaderFunction

Figure 11: An illustration of the scene graph used for the
visualization of the ablation zone. Varying shader functions
are used for the correct composition of the alpha value of
the 2D and 3D viewers, respectively.

For this purpose, a shader include node, which adds a cus-
tom library function into the shader pipeline, is inserted into
the scene graph of our system. The custom library function
evaluates whether a sample is inside or outside of the ab-
lation zone’s ellipsoid (see Figure 9). Additionally, we de-
fine an applicator container node which encapsulates a single
shader function node as well as the required applicator and
ablation zone shader parameters. The parameter nodes hold

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1037

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

(a) (b) (c) (d)

Figure 10: Image (a) shows a multi-modal rendering of three MR data sets and a defined clip plane. The vessel data sets (red
arteries, Time-of-Flight MRI; blue veins, contrast enhanced T1 MRI) are excluded from clipping (b). Image (c) shows enabled
shading of all data sets. In (d), additional clip planes are defined to clip the vessels. Data sets courtesy by Lahey Clinic, Boston.

the attributes which define the ellipsoids’ size, position, and
orientation. The custom pipeline function is inserted before
the start step of the rendering pipeline. It calls the library
ellipsoid function with the ellipsoid attributes and stores in
the global state wether the current sample is inside or out-
side the ablation zone. To visualize the final ablation zone,
we connect a single function node outside the container to
handle the visual properties (color, alpha, silhouette) of the
ellipsoids. The shader function is appended to the pipeline
after the compositing step. This design allows altering the
visualization properties for varying viewers, e.g., changing
the alpha value of the ablation zone for a 2D visualization.
Figure 11 illustrates the used scene graph. Note that the vol-
ume renderer and the ellipsoid header include as well as all
container nodes are shared by both viewers. In contrast, the
compositing of the ablation zone is implemented differently
in separated shader function nodes.

We integrated this scene graph into our medical applica-
tion [RSW∗09]. If an applicator model is added by the end
user from the application’s GUI, the application automati-
cally generates a container node with the required shader
parameters and connects it to the scene graph. Thus, mul-
tiple RF applicators with corresponding ablation zones can
be manipulated interactively and visualized in 2D and 3D
simultaneously (see Figure 12).

7. Results And Discussion

We present a prototyping framework for DVR, which was in-
tegrated in the MeVisLab development environment. In con-
trast to the original SuperShader concept, we do not use
a control shader. Instead, the shader snippets are directly
copied into the resulting shader string to be able to add cus-
tom shader code dynamically. To allow the compilation of
the shader pipeline with custom shader code, the shader fac-
tory creates the shader string at each rendering frame and
caches compiled shaders for reuse. Due to the optimization

of the GLSL compiler, no changes in the final rendering per-
formance could be measured, although the pipeline shader
string is three times longer than the hand-optimized shader.

Two examples are presented, which are integrated in
stand-alone medical applications developed with MeVisLab.
In the first example, we demonstrate how a simple render-
ing effect can be developed and attached to the pipeline
several times. In the second example, we demonstrate how
varying rendering effects were developed and subsequently
integrated into a medical multi-viewer software assistant.
Effects such as the visualization of ellipsoids can be dy-
namically integrated several times in the volume rendering
pipeline without considering the remaining shader. Further-
more, custom shader functions in the scene graph are used
to alter the composition of the ellipsoids allowing for simul-
taneous visualization in different viewers (2D and 3D).

For preliminary feedback, we presented our system to a
medical image processing expert, who was not involved in
the development of our system. He utilized custom shader
functions to implement clip planes attached to specific
pipeline steps to define a dependence to the volume to be
clipped. Suitable GUIs in the scene graph supported the re-
searcher in intuitively editing custom shader code at run-
time. Although the shader pipeline concept was new and the
detailed internal structure of the rendering shader was un-
known, the developer easily managed to implement the clip
planes within a few minutes. However, basic knowledge of
shader programming and volume rendering was needed.

System aim. Our framework targets supporting the devel-
oper to extend the volume rendering with custom shader al-
gorithms and to integrate the resulting volume visualization
into real-life applications with minimum development over-
head. In contrast, the shader composer proposed by Plate et
al. aims to support the creation of special purpose shader
programs utilizing data flow widgets. The work of Rössler

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1038

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

(a) (b)

Figure 12: Two RF applicators are positioned into a tumor. Image (a) shows a 2D visualization of a single slice, cutting the
upper located applicator. Image (b) shows the corresponding 3D volume rendering of the same data set. Using the shader
pipeline, for each representation, varying visual features are applied (colors, silhouettes, transparency), but the underlying
information is equal (ellipsoid properties, image data, tumor mask). Data sets courtesy by RWTH Aachen University Hospital.

et al. is intended to wrap complex shading algorithms into a
graph representation to allow the user to concentrate on the
visualization result. VolumeShop is a prototyping platform
for visualization research that provides maximum flexibility
to the developer. Voreen facilitates the research of new inter-
active visualization techniques for volumetric data sets with
high flexibility. Our system is limited to customize shading
effects and adjust the configuration of the render core at run-
time. Extending the render core with additional, configurable
features needs to be done in C++.

Modular combinability. We propose a dynamic shader
pipeline, which facilitates substituting pipeline steps during
run-time while ensuring a valid final shader. In other sys-
tems, the final shader is composed using predefined GLSL
functions (cf. Voreen) or by collecting the shader snippets
from predefined nodes (cf. Plate et al. and Rössler et al.).
The advantage of our approach is that shader effects can
be freely combined without modifying the remaining shader
code or adding all possible combinations. For instance, arbi-
trary lights or additional volumes can be enabled, resulting
in an automatic insertion of the corresponding shader code.

Extension of the rendering shader. Utilizing our shader
pipeline allows the developer to interactively extend the
rendering by appending arbitrary custom shaders functions
without recompiling the C++ code. Utilizing the global
struct for communication, the pipeline steps are independent
from each other and can be changed without affecting other
pipeline functions (e.g., swap gradient calculation). In con-
trast, the frameworks of Rössler et al. and Plate et al. do not
support editing of the node’s shader code without recom-
piling the C++ project. In Voreen, functions of a shader li-
brary can be interactively edited and are included in the fi-

nal shader using defines. However, custom shader code has
to be inserted in the final shader by hand. Similarly, XIP and
VolumeShop allow editing and freely combining shader snip-
pets. Because no mechanism for positioning of the snippets
is available, the snippets also have to be manually combined
to a valid shader. In conclusion, none of the related systems
allows adding and editing custom shader code during run-
time without the need to adjust the remaining shader (cf. ar-
bitrary clip planes), e.g., to add a call to the shader’s main
function. Thus, inserting multiple custom shader code with
varying parameterizations is difficult to achieve.

Application prototyping. Because our system is based on
a scene graph, custom shader nodes can be dynamically
connected to sub-graphs, resulting in modified rendering
pipelines for different viewers (cf. compositing of ellip-
soids), whereas the basic rendering shader will remain un-
modified. To our knowledge, this is a unique benefit, partic-
ularly for research and development of specialized rendering
effects for medical applications. Furthermore, the stability of
the shader core eases the generic extension of rendering ef-
fects for long-term use in MeVisLab.

8. Conclusions

The presented rapid prototyping framework for GPU-based
volume rendering allows flexible extension and dynamic al-
teration of the rendering configuration. The underlying ap-
proach is a dynamic rendering pipeline based on the Su-
perShader concept, to which custom shader functions can
be attached at run-time. We have shown the usefulness of
our framework, which has been successfully embedded into
medical applications. For future work, we also plan to apply
the shader pipeline to our raycasting-based volume renderer.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1039

Rieder et al. / A Shader Framework for Rapid Prototyping of GPU-Based Volume Rendering

References

[AW90] ABRAM G. D., WHITTED T.: Building Block Shaders.
SIGGRAPH Comput. Graph. 24, 4 (1990), 283–288.

[BG05] BRUCKNER S., GRÖLLER M. E.: VolumeShop: An In-
teractive System for Direct Volume Illustration. In Proc. of IEEE
Visualization (2005).

[BHWB07] BEYER J., HADWIGER M., WOLFSBERGER S.,
BUHLER K.: High-Quality Multimodal Volume Rendering for
Preoperative Planning of Neurosurgical Interventions. Visualiza-
tion and Computer Graphics, IEEE Transactions on 13, 6 (2007),
1696–1703.

[BiBPtHR08] BRECHEISEN R., I BARTROLI A. V., PLATEL B.,
TER HAAR ROMENY B.: Flexible GPU-based Multi-Volume
Ray-Casting. Vision, Modeling, and Visualization 2008: Pro-
ceedings, October 8-10, 2008, Konstanz, Germany (2008), 303.

[BVUW∗07] BITTER I., VAN UITERT R., WOLF I., IBANEZ L.,
KUHNIGK J.-M.: Comparison of Four Freely Available Frame-
works for Image Processing and Visualization That Use ITK. Vi-
sualization and Computer Graphics, IEEE Transactions on 13, 3
(May-June 2007), 483–493.

[CJN07] CABAN J. J., JOSHI A., NAGY P.: Rapid Development
of Medical Imaging Tools with Open-Source Libraries. J Digit
Imaging 20 Suppl 1 (Nov 2007), 83–93.

[Coo84] COOK R. L.: Shade Trees. SIGGRAPH Comput. Graph.
18, 3 (1984), 223–231.

[ER00] EBERT D., RHEINGANS P.: Volume Illustration: Non-
Photorealistic Rendering of Volume Models. In Proc. of IEEE
Visualization (2000), pp. 195–202.

[FW04] FOLKEGÅRD N., WESSLÉN D.: Dynamic Code Gener-
ation for Realtime Shaders. In Linköping Electronic Conference
Proceedings (2004).

[GBD04] GOETZ F., BORAU R., DOMIK G.: An XML-based
Visual Shading Language for Vertex and Fragment Shaders. In
Web3D ’04: Proceedings of the ninth international conference on
3D Web technology (New York, NY, USA, 2004), ACM, pp. 87–
97.

[GD06] GOETZ F., DOMIK G.: Visual shaditor: a seamless
way to compose high-level shader programs. In ACM SIG-
GRAPH 2006 Research posters (New York, NY, USA, 2006),
SIGGRAPH ’06, ACM.

[Har04] HARGREAVES S.: Generating Shaders from HLSL Frag-
ments. In ShaderX3: Advanced Rendering with DirectX and
OpenGL, Engel W., (Ed.). 2004, ch. 7.3, pp. 555–568.

[HKRs∗06] HADWIGER M., KNISS J. M., REZK-SALAMA C.,
WEISKOPF D., ENGEL K.: Real-Time Volume Graphics. A. K.
Peters, Ltd., Natick, MA, USA, 2006.

[LKP06] LINK F., KOENIG M., PEITGEN H.-O.: Multi-
Resolution Volume Rendering with per Object Shading. In Proc.
of VMV (2006), pp. 185–191.

[McG05] MCGUIRE M.: The SuperShader. In ShaderX4: Ad-
vanced Rendering Techniques, Engel W., (Ed.). 2005, ch. 8.1,
pp. 485–498.

[ME09] MCDONNEL B., ELMQVIST N.: Towards utilizing gpus
in information visualization: A model and implementation of
image-space operations. Visualization and Computer Graphics,
IEEE Transactions on 15, 6 (2009), 1105–1112.

[MeV11] MEVIS MEDICAL SOLUTIONS AG: MeVisLab, med-
ical image processing and visualization. http://www.
mevislab.de, March 2011.

[MLZ∗02] MEISSNER M., LORENSEN B., ZUIDERVELD K.,
SIMHA V., WEGENKITTL R.: Volume rendering in medical ap-
plications: we’ve got pretty images, what’s left to do? Proceed-
ings of the conference on Visualization’02 (2002), 575–578.

[MSPK06] MCGUIRE M., STATHIS G., PFISTER H., KRISHNA-
MURTHI S.: Abstract Shade Trees (preprint). In Symposium on
Interactive 3D Graphics and Games (March 2006).

[MSRMH09] MEYER-SPRADOW J., ROPINSKI T., MENSMANN
J., HINRICHS K. H.: Voreen: A Rapid-Prototyping Environment
for Ray-Casting-Based Volume Visualizations. IEEE Computer
Graphics and Applications 29, 6 (Nov./Dec. 2009), 6–13. to ap-
pear.

[PET07] PRIOR F. W., ERICKSON B. J., TARBOX L.: Open
source software projects of the cabigTM in vivo imaging
workspace software special interest group. J Digit Imaging 20,
S1 (Nov 2007), 94–100.

[PHF07] PLATE J., HOLTKAEMPER T., FROEHLICH B.: A Flexi-
ble Multi-Volume Shader Framework for Arbitrarily Intersecting
Multi-Resolution Datasets. IEEE Transactions on Visualization
and Computer Graphics 13, 6 (2007), 1584–1591.

[RBE08a] RÖSSLER F., BOTCHEN R., ERTL T.: Dynamic
Shader Generation for Flexible Multi-Volume Visualization.
IEEE Pacific Visualization Symposium (2008), 17–24.

[RBE08b] RÖSSLER F., BOTCHEN R. P., ERTL T.: Dynamic
Shader Generation for GPU-based Multi-Volume Raycasting.
Computer Graphics and Applications 28, 5 (2008), 66–77.

[RSW∗09] RIEDER C., SCHWIER M., WEIHUSEN A., ZID-
OWITZ S., PEITGEN H.-O.: Visualization of Risk Structures for
Interactive Planning of Image Guided Radiofrequency Ablation
of Liver Tumors. Proceedings of SPIE Medical Imaging (Jan
2009).

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T., ERTL
T.: A Simple and Flexible Volume Rendering Framework for
Graphics-Hardware-based Raycasting. Volume Graphics, 2005.
Fourth International Workshop on (2005), 187– 241.

[Tat04] TATARCHUK N.: RenderMonkey: an effective environ-
ment for shader prototyping and development. In ACM SIG-
GRAPH 2004 Sketches (New York, NY, USA, 2004), SIG-
GRAPH ’04, ACM, pp. 91–.

[TD07] TRAPP M., DÖLLNER J.: Automated Combination of
Real-Time Shader Programs. In Proccedings of Eurographics
2007 (September 2007), Cignoni P., Sochor J., (Eds.), Euro-
graphics, The Eurographics Association, pp. 53–56.

[WEE02] WEISKOPF D., ENGEL K., ERTL T.: Volume Clipping
via Per-Fragment Operations in Texture-Based Volume Visual-
ization. Visualization, 2002. VIS 2002. IEEE (2002), 93–100.

[WRD∗11] WEILER F., RIEDER C., DAVID C. A., WALD C.,
HAHN H. K.: AVM-Explorer: Multi-Volume Visualization of
Vascular Structures for Planning of Cerebral AVM Surgery. Eu-
rographics 2011. Short Papers and Medical Prize Awards (2011),
in press.

[XIP11] XIP: The Open eXtensible Imaging Platform Project.
http://www.openxip.org, March 2011.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

1040

http://www.mevislab.de
http://www.mevislab.de
http://www.openxip.org

