
NAME
verify -- model-check a system of communicating machines

SYNOPSIS
verify [option ...] [scm-file]

DESCRIPTION
The verify tool reads the model given in the specified scm-file and model-checks it. If scm-file is

omitted, the model is read from the standard input.

The model contains the description of a system of communicating machines along with, optionally,

the specification of a set of bad configurations. See scm(5) for a description of the scm input

language.

Upon succesful termination, verify either reports that the model is safe (if no bad configuration is

reachable), or provides a counter-example trace (leading to some bad configuration).

Note that, depending on the input model and on the options that are used, verify may abort, or

compute indefinitely. This problem cannot be avoided due to the undecidability of the model-

checking problem for systems of communicating machines.

OPTIONS
Main Options
-mc-engine engine

Specifies the main algorithm used for model-checking. The following engines are available:

absint Static analysis based on abstract interpretation.

armc Abstract regular model-checking.

cegar Counter-example guided partition abstraction refinement. This is the default.

-no-validation
The model-checking engine returns either a safe inductive invariant, or a counter-example

trace. By default, this result is validated by a simple, independent algorithm. This option

disables this validation.

-statistics
Upon succesful termination, verify displays detailed statistics about execution time and

memory consumption.

Scm Wrapper Options
-scm-rel method

VERIFY(1) Local Manual VERIFY(1)

Darwin 10.7.0 August 9, 2011 Darwin 10.7.0



The symbolic one-step binary reachability relation of the model is not (directly) provided by

the Scm library. This option specifies the method used to compute this binary relation. The

following methods are supported:

post Use the symbolic post operator of the Scm library.

pre Use the symbolic pre operator of the Scm library.

mixed Use post for send actions and pre for receive actions. This is the default.

-extrapolation operator

Specifies the extrapolation operator used for over-approximation of queue decision diagrams.

The over-approximations provided by the Scm library are based on state equivalences. The

following extrapolation operators are available:

bisim-fwd Forward k-depth bisimulation equivalence. This is the default.

bisim-bwd Backward k-depth bisimulation equivalence.

bisim-both Conjunction of the two previous equivalences.

lang-fwd Forward k-depth language equivalence.

lang-bwd Backward k-depth language equivalence.

lang-both Conjunction of the two previous equivalences.

identity Identity function (no over-approximation).

-extrapol-coloring coloring

Specifies the state coloring applied by the extrapolation operator on queue decision

diagrams. The state equivalence induced by this coloring defines the 0-depth equivalence

(see -extrapolation). The following state colorings are available:

final Distinguish final states from the others (2 colors).

init Distinguish initial states from the others (2 colors).

both Conjunction of the two previous equivalences (4 colors).

none Merge all states (1 color).

auto Behave as final for forward extrapolations, as init for backward extrapolations, and as

VERIFY(1) Local Manual VERIFY(1)

Darwin 10.7.0 August 9, 2011 Darwin 10.7.0



both for extrapolations that use both directions. This is the default.

-channel-policy policy

Channels in an scm model can be either perfect or lossy (see scm(5)). This option allows to

override the reliability policy of the channels. The following reliability policies are

supported:

all-lossy Make all channels lossy.

all-perfect Make all channels perfect.

normal Keep the policy specified in the scm input. This is the default.

Cegar Options
-graph-exploration search

Specifies the exploration algorithm used to find a counter-example in the abstract graph. The

following graph search algorithms are supported:

fwd-dfs Forward depth-first search.

fwd-bfs Forward breadth-first search.

bwd-dfs Backward depth-first search.

bwd-bfs Backward breadth-first search.

mixed Use only breadth-first search and select the direction with the smallest set of initial

vertices. This is the default.

-partition-refinement method

When the abstract graph contains a spurious counter-example, the underlying partition is

refined in order to eliminate this counter-example. Refinement consists in splitting some

abstract nodes visited by the spurious counter-example, and relies on a trace invariant that

‘‘explains’’ why the abstract counter-example is spurious. This option specifies the method

used to compute trace invariants. The following methods are available:

apinv-bwd Perform an adaptive extrapolated symbolic pre computation along the abstract

counter-example, starting from the failure abstract node. This is the default.

apinv-fwd Reversed version of apinv-bwd (uses post).

upinv-fwd Perform a uniform extrapolated symbolic post computation along the abstract

counter-example.

VERIFY(1) Local Manual VERIFY(1)

Darwin 10.7.0 August 9, 2011 Darwin 10.7.0



upinv-bwd Reversed version of upinv-fwd (uses pre).

-extrapol-start-param start

The extrapolation operator is parameterized by a non-negative integer k. This option

specifies the starting value of k. The trace invariant generation algorithms first try with k =

start (which produces the coarsest over-approximation) and then iteratively increases k until

a precise enough refinement is obtained. The start must be a nonnegative integer. The

default is 0.

As an exception, it is also possible to specify a start of -1. The extrapolation for k = -1

consists in merging all states of the queue decision diagram. In other words, this

extrapolation is equal to the bisimulation-based extrapolation for k = 0 with

-extrapol-coloring none.

-graph-refinement method

When an abstract node is split into n refined nodes, the abstract edges that enter or leave this

node must be refined. This option specifies the method used to compute the refined edges.

The following methods are supported:

rel Use the model’s symbolic one-step binary reachability relation rel. This method

requires, for each edge refinement, n rel computations.

post-pre Use the model’s symbolic post and pre operators. This method requires, for each

edge refinement, 1 post/pre computation and n emptiness tests. This is the default.

-limit limit

Limit the number of Cegar loop iterations to limit. The limit must be a nonnegative integer.

The default is OCaml’s max_int.

APInv Options
-safe-approximation algorithm

Adaptive trace invariant generation relies on a simplification procedure that, given a pair (r1,

r2) of disjoint regions, returns an over-approximation of r1 that is still disjoint from r2. This

option selects the algorithm used for the computation of this safe over-approximation. The

following algorithms are available:

split Given (r1, r2), return the extrapolation of r1 for the smallest parameter k that leads

to an empty intersection with r2. This is the default.

co-split Given (r1, r2), return the complement of the region obtained with split on (r2, r1).

Miscellaneous Options
-screen-width width

VERIFY(1) Local Manual VERIFY(1)

Darwin 10.7.0 August 9, 2011 Darwin 10.7.0



Use width columns for pretty-printing.

SEE ALSO
control(1), scm(5)

AUTHORS
The verify tool is mainly written, maintained and tested by:

Alexander Heussner <alexander.heussner@labri.fr>

Gregoire Sutre <gregoire.sutre@labri.fr>

See the AUTHORS file in the source distribution for the full list of contributors.

Web site: http://altarica.labri.fr/forge/projects/mcscm/wiki

CAVEATS
Numerical values held by messages or local variables are currently ignored by verify.

- Conditions in transitions and bad configurations are discarded and assumed to be true.

- Assignments in transitions are ignored.

These rules guarantee that the analysis performed by verify is ‘‘safety-conservative’’.

BUGS
Please visit the following page for bug reports and feature requests:

http://altarica.labri.fr/forge/projects/mcscm/issues

ACKNOWLEDGEMENTS
The verify tool is programmed in Objective Caml and uses several 3rd-party libraries:

- Camllib, Fixpoint, LatticeAutomata, and Scm. By Bertrand Jeannet and Tristan Le Gall. Licensed

under the LGPL. Web site: http://gforge.inria.fr/projects/bjeannet/.

VERIFY(1) Local Manual VERIFY(1)

Darwin 10.7.0 August 9, 2011 Darwin 10.7.0


