
NAME
scm -- scm language

DESCRIPTION
The scm textual language was introduced in the Ph.D. thesis of Tristan Le Gall. An scm model

contains the description of a system of communicating machines. This description is composed of

two parts:

- A header that specifies the set of fifo channels and the message alphabet.

- A list of automata, each modeling a communicating machine.

For model-checking purposes, the format also permits the specification of a set of bad configurations.

Header
1. Start the description of a system of communicating machines and specify its name:

scm ident :

2. Specify the number of channels:

nb_channels = integer ;

The set of channels is {0, ..., n-1} where n is the number of channels. By default, all channels are

perfect.

3. Tag some channels as lossy (optional):

[lossy : integer [, integer ...]]

4. Declare the message alphabet as follows:

parameters : [{int | real} ident [= expr] ; ...]

The alphabet is the same for all channels. Each message holds a typed numerical value.

Automata
1. Start the description of an automaton and specify its name:

automaton ident :

2. Declare the automaton’s local variables (optional):

SCM(5) Local Manual SCM(5)

Darwin 11.4.0 September 14, 2011 Darwin 11.4.0

[{int | real} ident [= expr] ; ...]

3. Specify the automaton’s initial states:

initial : integer [, integer ...]

4. Declare the automaton’s states together with outgoing transitions:

state integer : [to integer : command ; ...]

where command is of the following form:

when cond [, integer {! | ?} ident] [with ident = expr [, ident = expr ...]]

Semantics
The operational semantics of a system of communicating machines is the usual one: the automata

move asynchronously according to their local transitions, and they communicate exclusively through

the channels. Communication actions are ! (send) and ? (receive). Channels are fifo, unbounded, and

initially empty. Note that channels need not be point-to-point, they are shared by all automata.

Bad Configurations
The description of the system of communicating machines is, optionally, followed by the

specification of a set of bad configurations:

bad_states : (automaton ident : badlocal ... [with regexp]) ...

where badlocal is of the following form:

in integer : cond ...

The local constraints in a badlocal specification are disjuncted together. The badlocal specifications

in a bad_states declaration are conjuncted together.

The queue contents are represented by a regular expression regexp as defined below.

Regular Expressions
Queue contents for specifying bad states or displaying the current states of a system of

communicating machines are represented by regular expressions of the following form:

regexp

::= _ | # | a for a in the message alphabet

| regexp . regexp | (regexp | regexp)
| regexp ^* | regexp ^+

SCM(5) Local Manual SCM(5)

Darwin 11.4.0 September 14, 2011 Darwin 11.4.0

The operators on regular expressions are interpreted as usually: . stands for concatenation, | for

disjunction, ^* is the reflexive-transitive closure, and ^+ the transitive closure. The empty word is

denoted by _ .

The symbol # is interpreted as separator for channels in regexp. Each word matched by regexp must

contain exactly n-1 occurrences of # where n is the number of channels.

EXAMPLE
The following example is the classical connection/disconnection protocol.

scm connection_disconnection :

nb_channels = 2 ;

parameters :

real o ;

real c ;

real d ;

automaton sender :

initial : 0

state 0 :

to 1 : when true , 0 ! o ;

state 1 :

to 0 : when true , 0 ! c ;

to 0 : when true , 1 ? d ;

automaton receiver :

initial : 0

state 0 :

to 1 : when true , 0 ? o ;

state 1 :

to 0 : when true , 0 ? c ;

to 0 : when true , 1 ! d ;

bad_states:

(automaton receiver: in 0 : true with c.(o|c)^*.#.d^*)

This scm model has two channels, with message alphabet {o, c, d}. There are two automata, a sender

and a receiver. Their states and transitions should be self-explanatory. Bad configurations are those

where (a) the receiver is in local state 0, and (b) channel contents are in the regular expression

detailed below.

The regular expression c .(o | c)^*. # . d ^* is interpreted as the set of contents of two channels:

- The first containing any word over the alphabet {o, c} that starts with a message c.

- The second containing an arbitrary sequence of d (which can be of zero length, i.e., empty).

SCM(5) Local Manual SCM(5)

Darwin 11.4.0 September 14, 2011 Darwin 11.4.0

SEE ALSO
control(1), verify(1)

SCM(5) Local Manual SCM(5)

Darwin 11.4.0 September 14, 2011 Darwin 11.4.0

