
NAME
scm - scm language

DESCRIPTION
The scm textual language was introduced in the Ph.D. thesis of Tristan Le Gall. An scm model

contains the description of a system of communicating machines. This description is composed of

two parts:

- A header that specifies the set of fifo channels and the message alphabet.

- A list of automata, each modeling a communicating machine.

For model-checking purposes, the format also permits the specification of a set of bad configurations.

Header
1. Start the description of a system of communicating machines and specify its name:

scm ident :

2. Specify the number of channels:

nb_channels = integer ;

The set of channels is {0, ..., n-1} where n is the number of channels. By default, all channels are

perfect.

3. Tag some channels as lossy (optional):

[lossy : integer [, integer ...]]

4. Declare the message alphabet as follows:

parameters : [{int | real} ident [= expr] ; ...]

The alphabet is the same for all channels. Each message holds a typed numerical value.

Automata
1. Start the description of an automaton and specify its name:

automaton ident :

2. Declare the automaton’s local variables (optional):

SCM(5) Local Manual SCM(5)

Linux 3.2.0-3-amd64 September 14, 2011 Linux 3.2.0-3-amd64

[{int | real} ident [= expr] ; ...]

3. Specify the automaton’s initial states:

initial : integer [, integer ...]

4. Declare the automaton’s states together with outgoing transitions:

state integer : [to integer : command ; ...]

where command is of the following form:

when cond [, integer {! | ?} ident] [with ident = expr [, ident = expr ...]]

Semantics
The operational semantics of a system of communicating machines is the usual one: the automata

move asynchronously according to their local transitions, and they communicate exclusively through

the channels. Communication actions are ! (send) and ? (receive). Channels are fifo, unbounded, and

initially empty. Note that channels need not be point-to-point, they are shared by all automata.

Bad Configurations
The description of the system of communicating machines is, optionally, followed by the

specification of a set of bad configurations:

bad_states : (automaton ident : badlocal ... [with regexp]) ...

where badlocal is of the following form:

in integer : cond ...

The local constraints in a badlocal specification are disjuncted together. The badlocal specifications

in a bad_states declaration are conjuncted together.

The queue contents are represented by a regular expression regexp as defined below.

Regular Expressions
Queue contents for specifying bad states or displaying the current states of a system of

communicating machines are represented by regular expressions of the following form:

regexp

::= _ | # | a for a in the message alphabet

| regexp . regexp | (regexp | regexp)
| regexp ^* | regexp ^+

SCM(5) Local Manual SCM(5)

Linux 3.2.0-3-amd64 September 14, 2011 Linux 3.2.0-3-amd64

The operators on regular expressions are interpreted as usually: . stands for concatenation, | for

disjunction, ^* is the reflexive-transitive closure, and ^+ the transitive closure. The empty word is

denoted by _ .

The symbol # is interpreted as separator for channels in regexp. Each word matched by regexp must

contain exactly n-1 occurrences of # where n is the number of channels.

EXAMPLE
The following example is the classical connection/disconnection protocol.

scm connection_disconnection :

nb_channels = 2 ;

parameters :

real o ;

real c ;

real d ;

automaton sender :

initial : 0

state 0 :

to 1 : when true , 0 ! o ;

state 1 :

to 0 : when true , 0 ! c ;

to 0 : when true , 1 ? d ;

automaton receiver :

initial : 0

state 0 :

to 1 : when true , 0 ? o ;

state 1 :

to 0 : when true , 0 ? c ;

to 0 : when true , 1 ! d ;

bad_states:

(automaton receiver: in 0 : true with c.(o|c)^*.#.d^*)

SCM(5) Local Manual SCM(5)

Linux 3.2.0-3-amd64 September 14, 2011 Linux 3.2.0-3-amd64

This scm model has two channels, with message alphabet {o, c, d}. There are two automata, a sender

and a receiver. Their states and transitions should be self-explanatory. Bad configurations are those

where (a) the receiver is in local state 0, and (b) channel contents are in the regular expression

detailed below.

The regular expression c .(o | c)^*. # . d ^* is interpreted as the set of contents of two channels:

- The first containing any word over the alphabet {o, c} that starts with a message c.

- The second containing an arbitrary sequence of d (which can be of zero length, i.e., empty).

SEE ALSO
control(1), verify(1)

SCM(5) Local Manual SCM(5)

Linux 3.2.0-3-amd64 September 14, 2011 Linux 3.2.0-3-amd64

