McScM: A General Framework for the
Verification of Communicating Machines*

Alexander Heuflner!, Tristan Le Gall?, and Grégoire Sutre?

! Université Libre de Bruxelles, Brussels, Belgium
2 CEA, LIST, DILS/LMeASI, Gif-sur-Yvette, France
3 Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

Abstract. We present McScM, a platform for implementing and compar-
ing verification algorithms for the class of finite-state processes exchanging
messages over reliable, unbounded FIFO channels. McScM provides tools
for the safety verification and controller synthesis of these infinite-state
models. Our verification tool implements several model-checking tech-
niques: CEGAR with different abstraction-refinement methods, abstract
interpretation, abstract regular model checking, and lazy abstraction.
Seen as a general framework for the class of transition systems with finite
control/infinite data, McScM delivers the basic infrastructure for imple-
menting verification algorithms, and privileges to conveniently implement
new ideas on a high level of abstraction. It also allows us to compare and
benchmark different algorithmic approaches with the same backend.

1 Introduction

The automatic verification of distributed algorithms and communication pro-
tocols is one of the most crucial tasks in software/hardware development and
maintenance. It is also one of the hardest, e.g., as one cannot directly infer
the global behaviour of a distributed system from its local components due to
asynchronous communication. This renders already simple analysis, verification,
and synthesis questions hard problems in theory. However, in practice, this leads
to a growing demand for versatile tools that also apply semi-algorithmic solutions,
approximations, abstractions, and heuristics.

We focus on the safety verification of communicating finite-state machines
(CM), an infinite-state formalism that consists of a set of local, finite state ma-
chines that communicate via global, asynchronous, reliable and unbounded FIFO
channels. The latter are demanded in practice by, e.g., distributed applications
based on TCP, the Sockets API, or MPI. Note that CM do not demand the
channels to be a priori point-to-point. The safety verification question demands,
given a CM and a set of “bad” states, whether no execution of this CM reaches
the bad states. This is known to be undecidable [3].

* This work was partially supported by the ANR project VacsiMm (ANR-11-INSE-004).

Cormac Flanagan and Barbara Koénig (Ed.): Proc. of 18th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), March 2012. LNCS 7214,
pp. 478-484, 2012. (© Springer-Verlag Berlin Heidelberg 2012

2 Alexander Heufiner, Tristan Le Gall, and Grégoire Sutre

As for other classes of Turing-complete infinite-state models, there are two
ways to tackle this problem. The first one is to restrict CM to a decidable fragment,
e.g., by imposing a bound on the size of the FIFO channels, or assuming the
channels to lose messages [1]. The second one is to provide only “partial” results,
either by semi-algorithmic methods that may not terminate, or over-approximative
approaches that may be inconclusive. Despite the rich theoretical work concerning
CM, there is currently no versatile tool that can be directly applied to CM’s
safety question , and that gives the user a choice among different algorithmic
approaches to solve a concrete verification question.

We aim at filling this gap by presenting a Model Checker for Systems of
Communicating Machines (McScM) that combines different algorithms for the
safety verification problem of CM under the same roof and provides a ready-to-
use front-end with the tool verify. McScM is available via our project’s web
page [14] either as a precompiled binary distribution (including man pages, a suite
of examples, and some benchmarking scripts), or as source code release. McScM
is programmed in OCaml and available under a BSD license. The development of
McScM takes place in a software forge [14] that provides a wiki for documentation
(including man pages and APT), a bug and issue tracker, as well as our theoretical
work [6, 7]. The following discussion refers to McScM’s release 1.2.

In the following, we present our implemented algorithms (Section 2) and
verify’s modular architecture (Section 3) before applying the tool in a small
comparative benchmark in Section 4 that shows its capabilities. Finally, we
change the focus to McScM as generic API/framework (Section 5) to implement
novel algorithms and ideas and compare to existing tools and frameworks.

2 Safety Verification of Communicating Machines

In our setting, an instance of the safety verification problem is given by a textual
representation of a CM (in a simple and intuitive automata-based language), and
a set of bad states, i.e., a set of global control states together with a representation
of the channel’s contents by regular expressions (for details, see scm(5) man
page). The tool verify allows the user to input this instance and to choose
among a variety of verification techniques. After completion of the analysis,
verify outputs either “model safe” if it finds an inductive invariant that proves
the system safe, or returns a counterexample, i.e., a proof that the system is not
safe. The tool aborts if it runs out of a resource that was a priori limited by the
user, e.g., the number of analysis steps or the maximum precision allowed for
abstraction. A closer look on the modular architecture of verify and the generic
aspects underlying McScM is postponed to the next section.

McScM currently implements the following four different verification tech-
niques:

absint: this abstract interpretation based approach [8] reduces verification to
the calculation of a fixpoint in an abstract lattice, and terminates in a finite
number of steps with either a positive answer (model safe), or aborts.

McScM 3

armc: the Abstract Regular Model Checking semi-algorithm [2] refines a global
regular abstraction of the system by symbolic successor (or predecessor)
calculation; we reimplemented the basic idea in our setting;

cegar: Counterexample Guided Abstraction Refinement is a semi-algorithmic
approach that allows to start with a rough, safety-conservative abstraction
that is refined along spurious counterexamples [4]; McScM started originally
by porting this approach to CM relying on a novel notion of path invariant
based refinement [6]; the implemented generic algorithm allows for a variety
of parameterization (in particular, path invariant generation methods);

lart: we implemented the lazy abstraction approach [9] based on the construction
of an abstract reachability tree; each vertex of the tree contains an abstract
region, which may be refined with the help of path invariants when needed;

We can compare the algorithms on the same background as they share an
underlying infrastructure implementing abstraction/extrapolating for CM, as
well as a library of graph algorithms and (path) invariant generators. The first
three techniques are semi-algorithms based on the abstract-check-refine paradigm.
When the CM is not safe, they provide counterezamples that are an important
feedback when using safety verification in practical (engineering) situations.
Contrariwise, absint always terminates without guaranteeing a conclusive answer.
A comparison of the four approaches with respect to a suite of example protocols
derived from practice follows in Section4.

Already revealing the benchmark’s outcome, there is no silver bullet among
the four techniques. Hence, to tackle a given instance of a CM safety verification
problem, one has to choose among approaches and need fine-grained influence
by additional parameterizations to the underlying algorithms (e.g., depth-first
versus breadth-first exploration of the CM). This is exactly what verify offers:
a “swiss army knife” for model checking systems of communicating machines.

In addition, McScM includes a supervisory control tool: control. If a CM
system does not satisfy a safety property, control automatically computes a
restriction of this system that assures safety by implementing the distributed
control algorithm presented in [7] (see control (1) man page for details).

3 A Closer Look on verify’s Modular Architecture

Figure 1 shows the modular architecture of McScM’s verify tool. The latter
provides a common (command line based) interface and infrastructure for the
implemented verification algorithms (absint, armc, cegar, lart), as well as allows
to plug in a symbolic representation of the infinite data part of the CM, i.e.,
the queue contents. Currently, we only provide a wrapper for a library based on
queue-content decision diagrams (QDD) [15]. The tool’s input is an instance of
the safety decision problem. Each algorithm accepts additional adaptations via
command line parameters. The tool outputs either a counterexample, a positive
result, or an abort message. McScM provides additional logging and profiling
information that can be output by the tool, and helps to benchmark and compare
algorithms, as seen in the next section.

4 Alexander Heufiner, Tristan Le Gall, and Grégoire Sutre

om p loxternal -3
A @ sem | braries: !
+ safety cond. wrapper Iscm, i

i
\atticeautomata _i

C absint ‘/C armc / cegar / lart
‘ |
pathinvariant— _ Lchecker A
lgenerator

Fig. 1. Modular Architecture of McScM’s Verification Tools

counterexample or safety certificate

“inconclusive” / abort out

(statistics/profiling/logging) ¢

validator

P

The cornerstone of McScM’s development is generic programming which
is supported by OCaml’s modules and functors. This functional programming
language based on type inference encloses the proof of behavioural guarantees at
compile time with respect to our implemented algorithm’s interfaces. In addition,
we also provide means for the on-the-fly validation of both intermediary results
(i.e., checking the result of a path invariant generation in cegar) and the inductive
safety invariant. Both add an additional layer of reliability, especially when
implementing new algorithms in McScM.

As our API is well specified and reasonably documented, it is relatively easy to
implement also other algorithms for CMs. For example, the previously mentioned
control tool is build of top of several OCaml modules of verify, and uses the
same fixpoint computation as absint.

4 A Comparative Benchmark of Verification Algorithms

Figure 2 was generated by using verify to benchmark the included verification
algorithms (on default parameters) on a suite of examples derived from practice.
The latter includes the alternating bit protocol (ABP), a simplified version of
TCP, and a distributed leader election algorithm (“Peterson”); the examples
range from simple protocols with 5 global control states (“c/d”) to around 10*
for Peterson. The benchmark was run on an off-the-shelf computer (3.2GHz Intel
i7-965, 64-bit Linux) and is contained as shell script in the latest McScM release.

In general, verify is able to give a solution for each example in a reasonable
amount of time and memory. However, there is no algorithm that proves to be
superior. absint provides a fast way of determining if a protocol is safe, however,
it is not able to cope with unsafe examples. Due to its termination guarantee,
it proves to be ideal as first line of attack when trying to verify an unknown
protocol. The main difference between cegar and armc is their way of refining the
abstraction, either locally and adapted, or globally for the whole model. This
gives an advantage for cegar in the examples that require a “precise” abstraction
only for a few control loops (like the Peterson algorithm, the erroneous load
balancer, or the token ring example), and for armc in most other cases. However,
our armc implementation is not able to cope with a simple non-regular protocol.
As cegar allows a variety of additional parameters to the algorithm, we can fill
the two gaps in the table by changing the underlying path invariant generation
(e.g., ~tc-engine apinv-fwd -k-min -1 leads to 13.48s/15.56 MiB (BRP) and

McScM 5

& o ©)
s et < W Ao (W 5
WS o o S e
?SS ‘?ﬁy o \0‘2&\: \o"’& «\@%@ ‘\0‘\“ ?Q‘Q\ ?O". e@"\‘e a\"&‘\ K‘é\‘\&@o‘) &
w w w w w w b b b w b w w b |bounded
v v 4 V| ¢ V|V v v v v V| ¢ v |safe

absint [0.05| 1.70 | 0.02 |0.00| 1.72 |0.00| 0.07 | 85.00 | 1.18 | 298.6 | 6.53 [0.10(0.16 | 27.43 |time (s)
2.97| 5.88 | 2.97 |2.75| 4.91 (2.97| 2.97 | 54.31 | 6.84 | 5.58 | 7.81 (3.94|3.94 | 14.44 |mem (MiB)
armc [0.11331.92| 0.01 |0.00 0.02 4.79 | 3.14 |195.88] 0.21 |0.12| 0.03 | 328.18
4.95| 773.8 | 2.97 |2.97 2.97 106.62| 31.06 | 14.59 | 6.84 |5.88| 3.94 |3143.52
cegar [0.23| — |0.02 |0.06] 2.66 [0.40| 0.02 | 1.41 | 8.06 | — | 7.92 |0.89] 0.12 | 14.9
3.94 2.97 |2.97| 7.91 |3.94| 2.97 | 46.56 | 14.59 18.47 |6.84| 3.94 | 35.91
lart — | —]0.010.02]56.21| — | 0.02 | 1.62 |1184.4] — [437.81| — | 0.01 —
2.97 |2.97|16.53 2.97 | 41.56 | 18.47 73.69 2.97

Fig. 2. Benchmarking verify’s Different Algorithms on a Suite of Examples (we
denote an abort due to an 1A time limit by “—”, and note for each example if it
is safe (v) or not safe (4), as well as if queues are used in a bounded way (b) or
without restriction (w); inconclusive results of absint are marked gray)

5.67s/10.72MiB (server)); however, there is also no default parameterization for
cegar that can be shown to be superior (see [6] for details).

To conclude, there is no silver bullet for the safety verification of CM among
our algorithms; however, their common front-end via verify proves to be a
flexible tool that can cope with all our examples.

5 The McScM Framework

McScM’s generic approach is based on symbolic finite control infinite data
transition systems (FCID) (a notion inspired by [5]); the latter are given by a
finite transition system enhanced by an appropriate region algebra as symbolic
representation of the infinite data. For CM, the region algebra is given by QDD,
and we define a regular abstraction for our systems thereupon.

Thus, McScM provides a generic API for, on the one hand, implementing new
algorithms on a high level of abstraction; and, on the other hand, allows to apply
the implemented algorithms to other members of the FCID family, by supplying
a fitting region algebra and a suited notion of abstraction.

Related Tools: McScM relates to other symbolic model checking tools that can
verify CM or subclasses thereof. SPIN [16], for example, allows to verify only
CM with a priori bounded channels (e.g., those marked b in Figure 2), but allows
for deciding properties specified in linear temporal logic. The CADP [10] toolbox
includes a p-calculus model checking tool limited to finite labelled transition
systems, i.e., CM with bounded channels only. The same restriction to finite
transition systems holds for other tools, like LTSA [13]. TReX [18] analyzes
infinite state systems: lossy channel systems with local timed/counter automata.
LEVER [12] is a learning-based model checker that supported CM with regular
channel languages in a previous, not further available version. So, McScM offers—
to our knowledge—the only currently freely available tool that can directly verify
CM with reliable, unbounded FIFO channels.

The LASH library [11] offers only symbolic data structures channels, but does
not provide any model checking algorithm for CM. The LASH API permits to
symbolically present several classes of FCID (e.g., by QDD, number decision

6 Alexander Heufiner, Tristan Le Gall, and Grégoire Sutre

diagrams (NDD), real vector automata (RVA)), and to implement algorithms
for each. Modular front-ends like TaPAS [17] (for FCIDs based on Presburger
arithmetic) even allow to implement for multiple FCID libraries at once. Even
tough McScM can be used in the same spirit to implement and compare model
checking algorithms for a given class of FCID, we are able to provide generic
algorithms that can be parameterized by any FCID for which we can provide a
symbolic representation. The latter must only be conform to the above mentioned
region algebra and supply an appropriate notion of abstraction, e.g., a suitable
wrapper for LASH’s RVA would directly port cegar to FCID representable by
real vector automata, e.g. timed or hybrid systems.

Future Work: McScM is a work in progress, hence, we are always optimizing
internals and provide extensions that prove handy for practical verification tasks,
like our planned direct support for PROMELA as input language. Our next big
step will lead beyond CM by allowing the local machines to have infinite data (like
counters or timers), which demands new insights and notions for abstractions and
invariants for these systems, as well as practicable algorithmic data-structures
for implementing a region algebra.

References

[1] P. Aziz Abdulla and B. Jonsson. Undecidable verification problems for programs
with unreliable channels. Information and Computation, 130(1):71-90, 1996.

[2] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
Proc. of CAV’04, LNCS 3114, 372-386, 2004.

[3] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. J. ACM,
30(2):323-342, 1983.

[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
Abstraction Refinement for Symbolic Model Checking. J. ACM, 50(5):752-794,
2003.

[5] T. Henzinger, R. Majumdar, and J.F. Raskin. A classification of symbolic
transition systems. ACM Transactions on Computational Logic, 6:1-32, 2005.

[6] A. HeufBiner, T. Le Gall, and G. Sutre. Extrapolation-based path invariants for
abstraction refinement of fifo systems. In Proc. of SPIN’09, LNCS 5578, 107-124.
Springer, 2009.

[7] G. Kalyon, T. Le Gall, H. Marchand, and T. Massart. Global state estimates
for distributed systems. In Proc. of FMOODS/FORTE’11, LNCS 6722, 198212,
2011.

[8] T. Le Gall, B. Jeannet, and T. Jéron. Verification of Communication Protocols
using Abstract Interpretation of FIFO queues. In Proc. of AMAST’ 06, LNCS
4019, 204-219. Springer, 2006.

[9] K. McMillan. Lazy abstraction with interpolants. In Proc. of CAV’06, LNCS 4144,
123-136. Springer, 2006.

[10] CADP. http://www.inrialpes.fr/vasy/cadp/.

[11] LASH. http://www.montefiore.ulg.ac.be/~boigelot/research/lash/.
[12] LEVER. http://abhayspace.com/static/lever.html.

[13] LTSA. http://http://www.doc.ic.ac.uk/1ltsa/.

[14] McScM. http://altarica.labri.fr/forge/projects/mcscm.

http://www.inrialpes.fr/vasy/cadp/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://abhayspace.com/static/lever.html
http://http://www.doc.ic.ac.uk/ltsa/
http://altarica.labri.fr/forge/projects/mcscm

McSeM

[15] Scm, Lattice Automata. http://gforge.inria.fr/projects/bjeannet/.
[16] SPIN. http://spinroot.com.

]
]
[17] TaPAS. http://altarica.labri.fr/forge/projects/3/wiki/TaPAS/.
[18] TReX. http://www.liafa.jussieu.fr/~sighirea/trex/.

http://gforge.inria.fr/projects/bjeannet/
http://spinroot.com
http://altarica.labri.fr/forge/projects/3/wiki/TaPAS/
http://www.liafa.jussieu.fr/~sighirea/trex/

